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Size distribution and the Hausdorff-Besicovitch dimension of two-scale Cantor dusts
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The Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

~Received 24 August 1998!

Simple fractal sets~for example, Cantor dust! can be characterized by a distribution function of sizes of the
set’s ‘‘building blocks.’’ This characterization can be useful in problems of fractal growth and coarsening. We
test it on a simple example of a two-scale deterministic Cantor dust. In the limit ofm@1 ~wherem is the
number of iterations in the fractal generating algorithm!, the discrete binomial distribution of sizes of this set
can be approximated by a continuous distribution. This continuous distribution gives an accurate estimate for
the Hausdorff-Besicovitch dimension. An algorithm is suggested for generating a random two-scale Cantor
dust with a tunable fractal dimension.@S1063-651X~99!01901-7#

PACS number~s!: 64.60.Ak, 61.43.Hv
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There has been a great deal of interest in fractal gro
far from equilibrium @1–3#. Inverse processes of fracta
coarsening~phase ordering of fractal clusters! have also at-
tracted attention; see Refs.@4–6# and references therein. Fo
most of these systems, a complete theoretical descriptio
the dynamics of fractal clusters is still lacking. A simplist
mean-field approach to these complex problems deals
the evolution of a distribution function of the fractal clust
with respect to the sizes of its elements, or ‘‘buildin
blocks’’ ~for example, of drops on a fractal-tree skeleto!.
Before using this approach for the dynamical problems, ho
ever, one has to test its ability to characterize the basic g
metrical properties of the system, such as fractal dimens
One of the aims of this paper is to perform this test. We ta
an example of a deterministic two-scale fractal set~Cantor
dust; see Refs.@7,8#! with a tunable~Hausdorff-Besicovitch!
fractal dimension. We characterize this set by an appro
mate continuous size distribution function and show that
distribution gives accurate results for thed measure@7,8# and
fractal dimension.~Incidentally, going to the seemingly in
nocent limit of a Gaussian distribution, one arrives a
wrong estimate for thed measure and we give a brief expl
nation of this phenomenon.! The second aim of this work is
to present a simple algorithm for generating random tw
scale Cantor dusts with a tunable fractal dimension. Ca
dust with such properties represents a convenient initial c
dition for simulating fractal coarsening processes under
ferent transport mechanisms. In particular, since we do
wish to deal with a size distribution that is ad function, we
chose to work with a two-scale Cantor dust.

We employ a well-known algorithm for creating a dete
ministic two-scale fractal set with a tunable fractal dime
sion @8#. The initiator of the fractal is a square of a unit sid
length. The generator consists ofn1 squares of sidel 1 andn2
squares of sidel 2 wherel 2. l 1. In each step of the fractal’s
construction every full square is replaced by the~properly
rescaled! generator. Thus a two-dimensional two-scale ‘‘pr
fractal’’ is created. The first two generations of the prefrac
are shown in Fig. 1 for a particular choice of the paramet
n1 , n2 , l 1, and l 2.

Let the squares of the prefractal be indexed accordin
their side length in an increasing order. That is, the smal
squares have indexk50, whereas the largest ones have
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dexk5m, wherem is the generation number. The~discrete!
distribution of the squares sizesf m(k) is the binomial distri-
bution

f m~k!5Cm
k S n1

n11n2
D m2kS n2

n11n2
D k

. ~1!

Using this distribution function, one can compute thed mea-
sure of the fractal set@7,8#

Md5Nm(
k50

k5m

f m~k!@ l 1
~m2k!l 2

k#d5~n1l 1
d1n2l 2

d!m , ~2!

whereNm5(n11n2)m is the total number of squares in th
mth generation. The Hausdorff-Besicovitch dimensionD is
defined as the root of the equationMd51 @7,8#, which
yields, for anym,

n1l 1
D1n2l 2

D51 . ~3!

Solving this algebraic equation, one findsD. The four pa-
rameters entering Eq.~3! make it possible to tune the fracta
dimension on the interval 0<D<2.

In the limit of m@1 the binomial distributionf m(k) can
be approximated by a continuous distribution function. L
us call it gm(R) and define it in a usual way

f m~k!Dk5gm~R!dR . ~4!

Then, using Stirling’s formula@9# in Eq. ~1! and going over
from the indexk to the square sizeR, we obtain

gm~R!5
mm11/2k2k21/2~m2k!2m1k21/2

~2p!1/2ln~ l 2 / l 1!R

3S n1

n11n2
D m2kS n2

n11n2
D k

, ~5!

where

k5
ln~R/ l 1

m!

ln~ l 2 / l 1!
. ~6!
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The d measure of the set can be written now as

Md5NmE
Rmin~m!

Rmax~m!

gm~R!Rd dR ~7!

and the Hausdorff-Besicovitch dimension can be found fr
the equationMd51. The continuous distribution functio
gives an accurate value of thed measure. As an illustration
we computedMd from Eqs.~5! and ~7! for the same choice
of parameters as in Fig. 1 and compared the results w
those obtained with the exact binomial distribution~1!. The
agreement is good, even for moderatem ~see Fig. 2!. ~For
these parametersD51.260 . . . ).

FIG. 1. ~a! First and ~b! second generations of the two-sca
prefractal forn158, n251, l 151/8, andl 251/2.
th

A simple saddle-point argument explains this agreeme
Indeed, returning to the variablek ~but still using the
Stirling’s formula!, one can rewriteMd as

Md5E
0

m

hm~k!dk , ~8!

where

hm~k!5m1/2@2pk~m2k!#21/2exp@Fm~k!# ~9!

and

Fm~k!52k ln~k/m!2~m2k!ln@~m2k!/m#

1~m2k!ln~n1l 1
d!1k ln~n2l 2

d! . ~10!

Using the saddle-point approximation and extending the
tegration limits to6`, we obtain

Md5
~n1l 1

d1n2l 2
d!m11

~2p mn1n2l 1
dl 2

d!1/2E2`

`

expF2
m~k2k0!2

2k0~m2k0!G dk ,

~11!

where the saddle pointk0 is given by

k05
n2l 2

dm

n1l 1
d1n2l 2

d
. ~12!

Calculating the integral, one finally obtains

Md5~n1l 1
d1n2l 2

d!m , ~13!

in agreement with Eq.~2!.

FIG. 2. d measure of the fractal set versusd, computed numeri-
cally by using the continuous distribution function~5! for m55, 10,
and 20. Also shown are the exact values of thed measure for the
samem, calculated by using the binomial distribution function~1!.
The parameters are the same as in Fig. 1.
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A warning should be issued here. Indeed, one is temp
to go a step further and approximate, for largem, the bino-
mial distribution~1! by the Gaussian distribution

Gm~k!5
n11n2

~2pmn1n2!1/2

3expF2
~n11n2!2~k2k* !2

2mn1n2
G , ~14!

where

k* 5
n2m

n11n2
. ~15!

Indeed, it is well known that form@1 the Gaussian distri
bution~14! is an excellent approximation to the binomial o
for calculating moments ofk ~see, for example, Ref.@10#, p.
133!. We notice, however, that it is not so for the purpose
computing thed measure.~One can easily check that usin
the Gaussian distribution one would arrive at a wrong re
for the d measure.! The reason is quite simple: Thed mea-
sure is a convolution, with the binomial distribution, ofex-
ponentialsof large parametersk andm2k @see Eq.~2!# and
these exponentials affect significantly the saddle-point ca
lations.

Our algorithm for generating arandomtwo-scale Cantor
dust is an extension of a single-scale algorithm by Mand
brot ~see Ref.@7#, p. 211! to two-scale fractals. Let 1/l 1 ,1/l 2,
and l 2 / l 1 be integers and assume for simplicity thatn15n2
51. Each iteration in the generating algorithm consists
the following four steps.

~a! Every occupied square is divided into 1/l 2
2 identical

squares with side lengthl 23~side length before this itera
tion!.

~b! For each of these 1/l 2
2 new squares we toss a coin

order to determine its fate. The probability for a square
survive isq.

~c! Each of the squares that were created in step~a! and
remained empty after step~b! is divided into l 2

2/ l 1
2 identical

squares with side lengthl 13~side length before this itera
tion!.

~d! For each of the squares generated in step~c! we toss a
coin in order to determine its fate. The probability for
square to survive isp.

The probability p1 that a square with a side lengt
l m(k)5 l 1

(m2k)l 2
k survives afterm iterations is given by

p15Cm
k qk~12q!m2kpm2k . ~16!

The probability thatnm(k) squares of side lengthl m(k) sur-
vive after themth iteration is given by the binomial distribu
tion
s

-

d

f

lt

u-

l-

f

o

P@nm~k!#5CNm~k!

nm~k!
p1

nm~k!
~12p1!Nm~k!2nm~k! , ~17!

whereNm(k)51/l m(k)2 is the total number ofl m(k) squares
~occupied or empty! in the unit square. Therefore, the ave
age number of squares with side lengthl m(k) that survive
after m iterations is equal to the average of the binom
distribution given by Eq.~17!:

nm~k!5Nm~k!p15Cm
k S q

l 2
2D kF ~12q!p

l 1
2 Gm2k

. ~18!

The ~normalized to unity! size distribution function of the
random two-scale Cantor dust isnm(k)/Nm, where

Nm5 (
k50

m

nm~k! ~19!

is the average number of surviving squares of all poss
side lengths. A natural generalization of thed measure to this
fractal set is

Md5 (
k50

m

nm~k!l m~k!d5 (
k50

m

Cm
k S ql2

d

l 2
2 D kF ~12q!pl1

d

l 1
2 Gm2k

.

~20!

The Hausdorff-Besicovitch dimension is calculated from t
equalityMd51, which yields

~12q!pl1
D221ql2

D2251 . ~21!

The four parameters entering Eq.~21! make it possible to
tune the fractal dimension on the interval 0<D<2. In par-
ticular, by a proper choice of the survival probabilitiesq and
p, one can generate a random fractal with the same fra
dimension as the deterministic one@compare to Eq.~3! with
n15n251]. A continuous size distribution function can b
introduced in the limit ofm@1, just as in the deterministic
case, and it can be used to estimate the Hausdo
Besicovitch fractal dimension.

In summary, both deterministic and random versions
two-scale Cantor dusts are available for simulating grow
and coarsening of multiple-connected fractal objects. T
continuous size distribution functions of these sets yield
curate estimates of the fractal dimension. An extension
three dimensions is straightforward. Finally, the squ
building blocks can be readily replaced in these algorith
by other geometric shapes~for example, by spherical drop
lets of the same sizes!.
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