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Size distribution and the Hausdorff-Besicovitch dimension of two-scale Cantor dusts
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Simple fractal set$for example, Cantor dustan be characterized by a distribution function of sizes of the
set’s “building blocks.” This characterization can be useful in problems of fractal growth and coarsening. We
test it on a simple example of a two-scale deterministic Cantor dust. In the linmt>ef (wherem is the
number of iterations in the fractal generating algoriththe discrete binomial distribution of sizes of this set
can be approximated by a continuous distribution. This continuous distribution gives an accurate estimate for
the Hausdorff-Besicovitch dimension. An algorithm is suggested for generating a random two-scale Cantor
dust with a tunable fractal dimensiof§1063-651X99)01901-7

PACS numbd(s): 64.60.Ak, 61.43.Hv

There has been a great deal of interest in fractal growtlglex k=m, wheremis the generation number. Thdiscrete
far from equilibrium [1-3]. Inverse processes of fractal gistripution of the squares sizég(k) is the binomial distri-
coarseningphase ordering of fractal clustersave also at- pytion
tracted attention; see Ref#i—6] and references therein. For
most of these systems, a complete theoretical description of ‘
the dynamics of fractal clusters is still lacking. A simplistic fm(K)=Cp,
mean-field approach to these complex problems deals with
the evolution of a distribution function of the fractal cluster ysing this distribution function, one can compute theea-
with respect to the sizes of its elements, or "building syre of the fractal sdt,8]
blocks” (for example, of drops on a fractal-tree skelgton
Before using this approach for the dynamical problems, how- k=m
ever, one has to test its ability to characterize the basic geo-  Mg=Np, >, fn(K[1{M I519=n18+nIH™, (2
metrical properties of the system, such as fractal dimension. k=0
One of the aims of this paper is to perform this test. We take _ m .
an example of a deterministic two-scale fractal €@antor whhereNm—(.nlerrzh) l'_? thedto;faIBnumbe.r Or: zquaresl};n the
dust; see Ref47,8]) with a tunable(Hausdorff-Besicovitch (th. gznerancr)]n. € ?uf‘ orti- ES'COV'_tC |mensh_ni
fractal dimension. We characterize this set by an approxi—.e ined as the root of the equatioq=1 [7.8], whic
mate continuous size distribution function and show that thiél'elds' for anym,
distribution gives accurate results for ttieneasur¢7,8] and
fractal dimension(Incidentally, going to the seemingly in-
nocent limit of a Gaussian distribution, one arrives at

n, \X

n{+n,

@

m—k
1
n;+ nz)

nlP+n,l2=1. 3)

wrong estimate for thd measure and we give a brief expla—aSOIVIng this algebram equation, one fins The four pa-
nation of this phenomengnThe second aim of this work is rgmeters entering _Ecq3) make it possible to tune the fractal
to present a simple algorithm for generating random tWO_dlmensmn_ on the |ntervalfel_3$2_. e

In the limit of m>1 the binomial distributiorf (k) can

scale Cantor dusts with a tunable fractal dimension. Cantotge approximated by a continuous distribution function. Let

dust with such properties represents a convenient initial con- . T
o . . . cus call itg,(R) and define it in a usual way
dition for simulating fractal coarsening processes under dif-

ferent transport mechanisms. In particular, since we do not f (KAk=0-(R)dR 4
wish to deal with a size distribution that is&function, we m(K) Im(R)AR. @
chose to work with a two-scale Cantor dust. Then, using Stirling’s formul49] in Eq. (1) and going over

We employ a well-known algorithm for creating a deter- from the indexk to the square siz®, we obtain
ministic two-scale fractal set with a tunable fractal dimen-

sion[8]. The initiator of the fractal is a square of a unit side M2, — k=120 o\ —mtx—1/2
. . m K (m—k)
length. The generator consistsmgf squares of side;, andn, Im(R)= 7
squares of sidé, wherel,>1;. In each step of the fractal’s (2m)™n(l,/1)R
construction every full square is replaced by flpeoperly m— p
: . “ n, n;
rescaleglgenerator. Thus a two-dimensional two-scale “pre- , (5)
fractal” is created. The first two generations of the prefractal ni+n; ni+n;
are shown in Fig. 1 for a particular choice of the parameters
where
ng, n,, I4, andl,.
Let the squares of the prefractal be indexed according to In(R/™)
their side length in an increasing order. That is, the smallest o= — 17 (6)
squares have indek=0, whereas the largest ones have in- In(l2/11)
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FIG. 2. d measure of the fractal set versidiscomputed numeri-
cally by using the continuous distribution functié®) for m=5, 10,
'.' and 20. Also shown are the exact values of theeasure for the
samem, calculated by using the binomial distribution functi).
The parameters are the same as in Fig. 1.

A simple saddle-point argument explains this agreement.
Indeed, returning to the variabl& (but still using the
Stirling’s formula), one can rewritéM 4 as

o Md=f0mhm<k>dk, ®

. . where

him(K)=mYq2mk(m—Kk) ]~ Zexf @ (k)] 9

. :.: and

® (k)=—=kIn(k/m)—(m—Kk)In[(m—k)/m]

(b) +(m=k)In(ny19)+kIn(n,l9). (10)
FIG. 1. (3 First and(b) second generations of the two-scale USing the saddle-point approximation and extending the in-
prefractal forn,=8, n,=1, 1;=1/8, andl,=1/2. tegration limits to+ <o, we obtain
d dym+1 . _ 2
The d measure of the set can be written now as Mg= (M1 + nal2) f F{— M} dk,
(2 mnn,l919)2) = 2ko(m—Kko)
Rmax(M) (11)
Mg=Ny [ " g, (RIRS R )
Rmin(m) where the saddle poirk; is given by
and the Hausdorff-Besicovitch dimension can be found from n,l9m
the equationMy=1. The continuous distribution function (12

0T 4 d-
gives an accurate value of tllemeasure. As an illustration nly+naly

we computedV 4 from Egs.(5) and(7) for the same choice Calculating the integral, one finally obtains

of parameters as in Fig. 1 and compared the results with '

those obtained with the exact binomial distributidn. The Md:(n1|c1‘+ n2|f21)m1 (13
agreement is good, even for moderate(see Fig. 2 (For

these parametel3=1.260...). in agreement with Eq2).
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i i i k _
A warning should be issued here. Indeed, one is yerrjpted P[nm(k)]zC;m((k))pzm(k)(l_pl)Nm(k) nm(k) o (17)
to go a step _further and approxmate,_for_ Iar_gethe bino m
mial distribution(1) by the Gaussian distribution whereN,,(k) =1/ (k)2 is the total number of (k) squares

(occupied or emptyin the unit square. Therefore, the aver-

ni;+n e ;
Gy(k)= 1—21/2 age number of squares with side lengti(k) that survive
(2mmngny) after m iterations is equal to the average of the binomial
(N4 np)2(k—k, )2 distribution given by Eq(17):
Xexpg — , (14 k m—k
2mmnn, S o[ a) | (1-a)p
() =Np(k)p=Cl| 5| | ——| . (19
where 15 I3
_npm The (normalized to unity size distribution function of the
* TNy (19 random two-scale Cantor dustrig,(K)/N,,, where
Indeed, it is well known that fom>1 the Gaussian distri- .
bution(14) is an excellent approximation to the binomial one Nngo Nim(K) (19)

for calculating moments df (see, for example, Ref10], p.
133. We notice, however, that it is not so for the purpose ofis the average number of surviving squares of all possible
computing thed measure(One can easily check that using side lengths. A natural generalization of theneasure to this
the Gaussian distribution one would arrive at a wrong resulfractal set is
for the d measure. The reason is quite simple: Thkmea-

sure is a convolution, with the binomial distribution, et- ™ e fal M (a—qpd]™ "
ponentialsof large parameters andm—k [see Eq(2)] and  My= Z Nm(K) (k)= Z Col 2| | /=2
these exponentials affect significantly the saddle-point calcu- k=0 k=0 12 Iy 20

lations.
Our algorithm for generating Endomtwo-scale Cantor = The Hausdorff-Besicovitch dimension is calculated from the

dust is an extension of a single-scale algorithm by Mande"equalityM_zl which yields

brot (see Ref[7], p. 21) to two-scale fractals. Let lly, 145, ==

andl, /I, be integers and assume for simplicity timat=n., (1-q)pl2~2+ql02%=1. (21)
=1. Each iteration in the generating algorithm consists of . . )
the following four steps. The four parameters entering E@1) make it possible to

(a) Every occupied square is divided intol %LAdenticaI tune the fractal dimension on the intervak@=<2. In par-
squares with side lengthy X (side length before this itera- ticular, by a proper choice of the survival probabilitgpand
tion). p, one can generate a random fractal with the same fractal

(b) For each of these Iﬁ/ new squares we toss a coin in dimension as the deterministic opgompare to Eq(3) with
order to determine its fate. The probability for a square toh1=n,=1]. A continuous size distribution function can be
survive isq. introduced in the limit ofm>1, just as in the deterministic

(c) Each of the squares that were created in $&@nd case, and it can be used to estimate the Hausdorff-
remained empty after stefb) is divided intol3/I identical ~ Besicovitch fractal dimension.
squares with side length X (side length before this itera- In summary, both deterministic and random versions of
tion). two-scale Cantor dusts are available for simulating growth

(d) For each of the squares generated in $bgpve toss a and coarsening of multiple-connected fractal objects. The
coin in order to determine its fate. The probability for a continuous size distribution functions of these sets yield ac-
square to survive ig. curate estimates of the fractal dimension. An extension to

The probability p; that a square with a side length thr_ee_ dimensions is straig_htforward. Einally, the square
I(k)=1{""R1K survives aftem iterations is given by building blocks can be readily replaced in these algorithms

by other geometric shapéfor example, by spherical drop-

p1=CKak(1—q)m *kpmkK. (16)  lets of the same sizps
The probability thah,,(k) squares of side length,(k) sur- This work was supported in part by a grant from the Israel
vive after thenth iteration is given by the binomial distribu- Science Foundation, administered by the Israel Academy of
tion Sciences and Humanities.
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